Census of Black Hole Accretion

```
Nancy A. Levenson (Univ. of Kentucky)
David Alexander (Durham)
David Ballantyne (Arizona)
Franz Bauer (Columbia)
Paul Nandra (Imperial College)
Daniel Stern (JPL/Caltech)
Ezequiel Treister (ESO)
Con-X facilitator: Ann Hornschemeier
```

Black hole and stellar growth in galaxies

 $M_{BH} - \sigma$ relation

- Black hole and stellar growth are related in the context of galaxy evolution
- X-rays reveal black hole growth phase directly
- AGN feedback → downsizing
- Goals: census and demographics of black holes
- Approaches: target well-studied fields and bright objects (not searching for the unknown)

Physical properties of interest

physical properties

- lacksquare L/L_{edd}
- M
- M_{BH}

```
Con-X will yield:

luminosity (with bolometric correction)

accretion rate (if assume efficiency)
```

other mass estimators are available X-rays may also directly reveal L/L_{edd} (or test this!) (Brandt et al. 1997; Shemmer et al. 2006)

Spectral complexity

NGC 3783 observed with Chandra gratings

(Kaspi et al. 2002)

Spectral complexity

Soft X-ray emission can masquerade as unobscured AGN

Feasibility

known deep fields X-rays to identify "unknown sources" feasibility of obscured AGN at $z{\sim}0.1$ feasibility of bright AGN at $z{\sim}2$

sources with optical spectra (D. Alexander)

Feasibility

sources with optical spectra (F. Bauer)

known deep fields X-rays to identify "unknown sources" feasibility of obscured AGN at $z{\sim}0.1$ feasibility of bright AGN at $z{\sim}2$

BH growth now and then

Key project 1: comparisons of AGN locally and at z=2

spectral complexity

absorption, emission, continuum scattering

(Awaki et al. 2006)

XMM data modeled as 2 power laws

BH growth now and then

• $z=2 L_*$ quasars

Related science:

probe along luminosity function at given z variation in accretion rate, outflow?

Buried AGN

Key project 2: Compton thick AGN

(Gilli et al. 2007)

Spectral contribution to cosmic X-ray background

Buried AGN

Compton thick AGN are typically hidden continuum suppressed E < 10keV
Primarily use XMS spectral diagnostics (Fe K) not HXT
Observe candidates from other surveys
e.g. WISE, NuSTAR

Buried AGN

- Compton reflection
- N_H distribution (as a function of z, L_X ?)
- Ultraluminous Infrared Galaxies (ULIRGs) connection to star formation a common phase of quasar evolution?

Single objects of interest

Not science drivers of Con-X, but important examples in the context of BH demographics and growth

- sub-mm galaxies
 extreme ULIRGs; require 1 Msec exposures at z=2.5
- lensed quasars more detailed spectroscopy on distant AGN (feedback at high z)

Future plans

- Determine the numbers of sources and the constraints needed to do science identified here
- Refine strategies for selecting samples

 e.g., use Spitzer and Integral results now for future selection from JWST, JDEM, and NuSTAR